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Abstract  
With no known treatments or vaccine, COVID-19 presents a major threat, particularly to older 
adults, who account for the majority of severe illness and deaths. The age-related susceptibility is 
partly explained by increased comorbidities including dementia and type II diabetes [1]. While it is 
unclear why these diseases predispose risk, we hypothesize that increased biological age, rather 
than chronological age, may be driving disease-related trends in COVID-19 severity with age. To 
test this hypothesis, we applied our previously validated biological age measure (PhenoAge) [2] 
composed of chronological age and nine clinical chemistry biomarkers to data of 347,751 
participants from a large community cohort in the United Kingdom (UK Biobank), recruited between 
2006 and 2010. Other data included disease diagnoses (to 2017), mortality data (to 2020), and the 
UK national COVID-19 test results (to May 31, 2020) [3]. Accelerated aging 10-14 years prior to 
the start of the COVID-19 pandemic was associated with test positivity (OR=1.15 per 5-year 
acceleration, 95% CI: 1.08 to 1.21, p=3.2´10-6) and all-cause mortality with test-confirmed COVID-
19 (OR=1.25, per 5-year acceleration, 95% CI: 1.09 to 1.44, p=0.002) after adjustment for 
demographics including current chronological age and pre-existing diseases or conditions. The 
corresponding areas under the curves were 0.669 and 0.803, respectively. Biological aging, as 
captured by PhenoAge, is a better predictor of COVID-19 severity than chronological age, and may 
inform risk stratification initiatives, while also elucidating possible underlying mechanisms, 
particularly those related to inflammaging. 
 
 
Introduction 
 
Coronavirus disease 2019 (COVID-19) represents one of the biggest threats to public health in 
nearly 100 years. While efforts are being undertaken to develop vaccines and antibody  
tests for COVID-19, in the interim, there is a critical need for assessing risk stratification and to 
explore the use of geroscience-guided interventions seeking to improve outcomes by targeting 
biological aging. Accurately identifying those most at-risk of severe complications or death will 
facilitate treatment decisions and inform guidelines regarding shelter-in-place and social distancing 
policies. As such, a major priority is in developing biomarkers that prognostically inform on severity 
of COVID-19 disease progression [5].  
 
The risk of fatality and/or severe complications due to COVID-19 infection is strongly age 
dependent. On March 18, 2020, the United States Center of Disease Control (CDC) projected that 
persons ages 85 and older have predicted mortality rates of 10-27%, compared to 3-11% for 
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individuals ages 65-84 years, 1-3% for those 55-64 years, and <1% for those 20-54 years of age 
[6]. All-in-all, those ages 85 and older have a mortality risk that is 100-fold higher than for those 
under the age of 50, and currently 8 out of 10 COVID-19 deaths in the United States are among 
adults age 65 or older. In addition to age, the CDC reports that morbidity prevalence—particularly 
history of diabetes, cardiovascular disease, chronic kidney disease, liver disease, and chronic 
obstructive pulmonary disease (COPD)—appears to exacerbate risk of death or symptomatic 
complications. Similar COVID-19 comorbidities were reported in other countries, e.g., UK [1], China 
[7], and Italy [8]. 
 
Previous studies have predicted COVID-19 outcomes (pneumonia and mortality) using hospital in-
patient data including demographics, signs and symptoms, clinical biomarkers, and imaging 
features. The performance in terms of C-statistic/index or area under the receiver operating 
characteristic (ROC) curve (AUC) was generally over 90% but subject to bias and overfitting [9]. 
One study predicted hospital admission related to upper respiratory infections (pneumonia, 
influenza, acute bronchitis, etc.), proxy events of COVID-19, using over 500 diagnosis features 
from thousands of general population samples [10]. The resulting AUCs were 70 to 80% but may 
not be generalized for COVID-19 as risk factors for COVID-19 and for other respiratory infections 
are not the same [11]. 
   
In recent years, we have developed and widely validated several biomarkers of aging [2][12][13] 
that strongly predict morbidity and mortality risk, in both short-term (1 year) and long-term (25+ 
years) follow-up [2][13][14]. Based on these observed trends, we hypothesize that biological aging 
(rather than chronological age) is a strong determinant of symptom severity following COVID-19 
infection. We aimed to assess the risk and predictive performance of accelerated aging for COVID-
19 severe infection using a biological age measure, named phenotypic age (PhenoAge). PhenoAge 
was trained using 42 biomarkers as inputs into a supervised machine learning model to predict all-
cause mortality [2][14].We applied this measure to biomarker data from 2006 to 2010 of participants 
from a large community cohort, United Kingdom Biobank (UKB) [15,16]. Combined with information 
on disease diagnoses updated to 2017, we tested whether PhenoAge was predictive of COVID-19 
severity based on mortality data and COVID-19 test results recently linked from the UK National 
Health Service [3]. 
 
Results 
 
445,875 participants attended baseline assessment centers in England, United Kingdom. 
Participants who died before the pandemic (set at February 1, 2020, n=24,805) were excluded from 
our analytical sample. Of the remaining n=421,070 samples (Table 1), 232,184 (55%) were female. 
94% of participants self-identified as White (n=393,738), 1.8% identified as Black (n=7,636), and 
4.1% identified as Other, which included Mixed, Asian, and Chinese (n=17,307).  
 
Among the included samples, 6,100 were tested between March 16 and May 31, 2020. Of the 
tested samples, 1,273 (20.9%) were positive yet survived, while 197 (3.2%) were positive and died 
after COVID-19 infection (first death: March 5, 2020, last death: April 26, 2020). The mean attained 
age on April 26, 2020 (current chronological age) was 67.9 (SD=8.1), where 269,172 (64%) were 
65 years and older. PhenoAge at baseline was available for 347,751 of included samples. The 
mean chronological age (56.3 ± 8.1) was 2.5 years older than the mean PhenoAge (53.8 ± 9.4) at 
baseline. A summary of the PhenoAge biomarkers at baseline is provided in Table 1.  
 
Two COVID-19 severity outcomes of interest were considered: 1) test positivity (test positive versus 
the rest, including untested samples and tested negative) and 2) died with test-confirmed COVID-
19 (positive dead versus the rest excluding those who were tested positive and survived). Given 
that viral testing in the study period was largely restricted to symptomatic hospitalized patients 
(66%), we assume untested samples were enriched for milder or asymptomatic COVID-19 
responses. Each severity outcome was used as the dependent variable in the following four logistic 
models:  
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  M1: current chronological age,   
  M2: current chronological age + PhenoAgeAccel at baseline, 
  M3: current chronological age + pre-existing diseases or conditions (“disease states”), and 
  M4: current chronological age + disease states + PhenoAgeAccel at baseline,  
 
The PhenoAge acceleration (PhenoAgeAccel) was estimated by the residual of PhenoAge 
adjusted for chronological age at baseline in a linear regression model. As such, PhenoAgeAccel 
represents how much older (or younger) an individual’s PhenoAge is relative to what is expected 
based on his/her chronological age. A value of 5 suggests a participant is 5 years older than 
expected (faster ager), while a value of -5 suggests he/she is 5 years younger than expected (slow 
ager). Thus, we hypothesize that higher PhenoAgeAccel (faster biological aging) will be positively 
associated with COVID-19 severity. All the above models were also adjusted for sex, ethnicity, and 
baseline assessment center in England.  
 
Men were more likely to test positive for COVID-19 and die with test-confirmed COVID-19 than 
women. Similarly, participants with self-reported black ethnicity were more likely to test positive 
than those with self-reported white ethnicity, regardless of models (Tables 2 and 3). Current age 
was minimally associated with test positivity, adjusted for demographics only (M1) or demographics 
and PhenoAgeAccel assessed 10-14 years prior (M2). However, it was protective when adjusting 
for pre-existing disease states additionally (M3 and M4). Increased age was associated with 
increased risk of mortality with or without adjustment for PhenoAgeAccel (M1 and M2), but the 
effect was moderately reduced with additional adjustment for disease states (M3 and M4).  
 
When considering PhenoAgeAccel, the odds ratio per 5-year increase in PhenoAgeAccel was 1.30 
(95% CI: 1.24 to 1.38, p=1.78´10-22) for test positivity and 1.55 (95% CI: 1.36 to 1.76, p=3.04´10-

11) for all-cause mortality in M2. This was moderately reduced to 1.15 (95% CI: 1.08 to 1.21, 
p=3.20´10-6) and 1.25 (95% CI: 1.09 to 1.44, p=0.002), with additional adjustment for diseases in 
M4. The diseases included in M3 and M4 were individually more or less associated with test 
positivity and all-cause mortality, adjusted for current chronological age, sex, ethnicity, and baseline 
assessment center in England (Supplementary Table S1). The disease associations tended to be 
reduced but associations with dementia, type II diabetes, hypertension, and COPD remained 
statistically significant, with additional adjustment for other diseases only and/or PhenoAge (Table 
3). Using samples with complete data to train M1-M4 models, the area under the receiver operating 
characteristic (ROC) curve (AUC) was 0.669 for test positivity and 0.803 for all-cause mortality 
using M4, compared to 0.601 and 0.755 using M1 (Figure 1). For the two COVID-19 severity 
outcomes, the specificity, positive predictive value (PPV), and negative predictive value (NPV) for 
M1 to M4 when the sensitivity is controlled at 0.6 or 0.8 are presented in Table 4.  
 
The sensitivity and PPV are probably the most important diagnostics here, representing percent of 
severe cases that will be pre-identified (sensitivity) and percent of identified cases that will be 
severely infected (PPV). A subject is identified for high risk of severe infection if the predicted 
probability is greater than the threshold for a desired sensitivity. For test positivity, 426 per 100,000 
identified cases are expected to be tested positive or hospitalized (PPV=426/100,000 versus the 
sample test positivity rate 349 per 100,000) using M4 with the predicted probability threshold 
0.00227 for 80% sensitivity, and the PPV increases to 578/100,000 when the sensitivity is set to 
0.6. For all-cause mortality, 101 per 100,000 identified cases are expected to die with test-
confirmed COVID-19 (PPV=101/100,000 versus the sample all-cause mortality rate 47 per 
100,000) using M4 with the predicted probability threshold 0.00029 for 80% sensitivity, and the 
PPV increases to 147/100,000 when the sensitivity is set to 0.6. 
 
For sensitivity analysis, we modelled the nine PhenoAge biomarkers jointly instead of 
PhenoAgeAccel in M2. Multiple biomarkers were associated with test positivity (p<0.05, Figure 2): 
the strongest association appeared to be with albumin (OR=0.87 per SD increase in albumin, 95% 
CI: 0.82 to 0.93, p=1.01´10-5), yet other significant biomarkers included glucose (OR=1.09, 95% 
CI: 1.04 to1.14, p=0.001), log(CRP) (OR=1.10, 95% CI: 1.04 to 1.18, p=0.002), RDW (OR=1.09, 
95% CI: 1.03 to 1.16, p=0.002), white blood cell count (OR=1.09, 95% CI: 1.03 to 1.16, p=0.003), 
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and creatinine (OR=1.10, 95% CI: 1.03 to 1.18, p=0.004). The associations between the 
biomarkers and test positivity or all-cause mortality were consistent (Figure 2). The associations 
with all-cause mortality tended to be underpowered as the COVID-19 mortality rate is extremely 
low. Still, glucose (OR=1.21 per SD increase in glucose, 95% CI: 1.09 to 1.34, p=2.31´10-4) was 
significantly associated with all-cause mortality, as well as log (CRP)(OR=1.20, 95% CI: 1.01 to 
1.42, p=0.037) and RDW (OR=1.18, 95% CI: 1.02 to 1.37, p=0.027). The AUC for M2 with either 
PhenoAgeAccel or the nine biomarkers was similar for test positivity (0.626 versus 0.632) and for 
all-cause mortality with test-confirmed COVID-19 (0.781 versus 0.777). 
 
We also built M1-M4 for inpatient test positivity comparing inpatient positives (n=975, 66% of 1470 
positives in total) to untested samples and those tested negative. The results were similar to those 
for test positivity (Supplementary Tables S2 and S3), e.g., the odds ratio for inpatient test positivity 
was 1.15 (95% CI: 1.07 to 1.23) per 5-year increase in accelerated PhenoAge versus 1.15 (95% 
CI: 1.08 to 1.21) for test positivity, using the model M4. Current chronological age was more strongly 
associated with inpatient test positivity than with test positivity, when diseases were not adjusted. 
The AUC for inpatient test positivity was 0.682 versus 0.669 for test positivity using M4. As for test 
positivity, albumin (OR=0.86, 95% CI: 0.80 to 0.92 per SD increase in albumin) was more strongly 
associated with inpatient test positivity than other PhenoAge biomarkers adjusting for sex, ethnicity, 
current chronological age, and baseline assessment center. 
 
Discussion 
 
Accelerated aging measured by PhenoAge more than a decade prior to the pandemic was 
associated with increased COVID-19 symptom severity, as measured by test positivity and all-
cause mortality with test-confirmed COVID-19. These associations were significant even when 
adjusting for various chronic diseases simultaneously. Similarly, some disease associations were 
lessened with the addition of PhenoAgeAccel (M3 vs. M4), including associations with type II 
diabetes, COPD, history of pneumonia, and chronic kidney disease. The association with COVID-
19 severity that these diseases share with PhenoAge may reflect the role of underlying immune-
related pathways. In our recent genome-wide association study (GWAS) on accelerated 
PhenoAgeAccel, we observed enrichment for biological processes involved in immune system, cell 
function, and carbohydrate homeostasis [17]. A methylation clock (DNAmPhenoAge) trained using 
PhenoAge as a surrogate for biological age, instead of chronological age, has been shown to be 
associated with activation of pro-inflammatory, interferon, DNAm damage repair, 
transcriptional/translational signaling, and various markers of immunosenescence: a decline of 
naïve T cells and shortened leukocyte telomere length [2]. Overall, this suggests that the accelerate 
biological aging profile captured by PhenoAge is largely characterized by accelerated inflammaging 
(chronic low-grade inflammation) [18], whose underlying mechanisms may contribute to severe 
COVID-19 symptoms. These fundamental biological aging processes—including, genomic 
instability, cell senescence, mitochondria dysfunction, microbiota composition changes, NLRP3 
inflammasome activation, primary dysregulation of immune cells, and chronic infections—may 
serve as potential targets for prevention of severe infection of COVID-19 [19]. 
 
The effect of current chronological age on test positivity or all-cause mortality following COVID-19 
infection only slightly changed with additional adjustment for PhenoAgeAccel. This likely reflects 
the variance in timing between the initial blood draw used to estimate PhenoAge and the COVID-
19 pandemic. The length of time that participants were followed remains an independent predictor, 
with longer follow-up associated with older ages and increased COVID-19 severity. We hypothesize 
that had PhenoAgeAccel been assessed simultaneously for all participants, the effect of 
chronological age may have been diminished or even reversed in a manner consistent with our 
previous findings for all-cause and disease-specific mortality [14]. In fact, reversal of the 
chronological age association—increased age tended to reduce the likelihood of test positivity—
was seen when adjusting for disease states. One explanation is that among people with 
comparable disease states, having a younger chronological age may reflect faster biological aging 
in those individuals. Nevertheless, the effect of age on mortality remained strong after adjustment, 
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which could suggest that disease state alone is not sufficient to capture the processes underlying 
the strong force of mortality in advanced age in this young cohort.   
 
Most notable, perhaps, is our finding that an integrative measure assessed in individuals a decade 
or longer prior to the current outbreak – divorced from chronological age and disease states – can 
provide such strong predictive power. The biomarkers in PhenoAge were selected based on their 
joint ability to predict age-related mortality. The biomarker-specific associations in this study, may 
shed light on the key aging signals that may be driving the association between biological aging 
and COVID-19 severity. We found that multiple biomarkers in PhenoAge were associated with 
COVID-19 severity, with the strongest associations found between albumin and test positivity and 
between glucose and all-cause mortality with test-confirmed COVID-19. Previous studies 
[20][21][22] have linked albumin to COVID-19 severity in hospitalized patients. We replicated the 
association using albumin levels assessed more than a decade before the pandemic, supporting 
the hypothesis that hypoalbuminemia is not due to decreased albumin synthesis in severely 
infected patients but chronic inflammation [22], also indicated by elevated CRP and white blood 
cell count. The association between glucose and all-cause mortality was not surprising as diabetes 
is a leading cause of COVID-19 mortality [23]. Elevated levels of glucose may increase viral 
replication in vivo and suppress the anti-viral immune response. Hyperglycemia has been linked to 
fatal outcomes in patients infected with influenza [24], which is consistent with our finding on 
glucose and all-cause mortality following COVID-19 infection. 
 
PhenoAges were estimated from blood draws that also took place more than a decade before the 
pandemic arose. On one hand, it is suggesting that an aging measure dating back that far had 
bearing on contemporaneous disease risk. This also provides further evidence that the PhenoAge 
and COVID-19 severity association is not completely due to underlying pathology or presence of 
disease. However, we hypothesize that some people who appeared to be “fast agers” at the time 
of blood draw may have improved their health, while others may have experienced worsening 
health over the decade. If so, we would expect the prognostic value of this measure to be enhanced 
by a more recent estimate of PhenoAge. 
 
One way to treat COVID-19 is to target the underlying mechanism. In this perspective, we have 
suggested that inflammation-related pathways may be potential targets due to the biological 
implication from the association between accelerated PhenoAge and COVID-19 severity. 
Alternatively, COVID-19 may be treated by reversing the aging process as the case fatality rate, 
increases with chronological age, PhenoAge, and burden of age-related diseases. Drugs under 
development to slow the aging process, e.g., rapamycin and metformin, may be used to treat 
COVID-19, building of the hypothesis and our results showing that people with younger biological 
ages are less prone to age-related diseases [4]. Rapamycin has been shown to slow aging in a 
number of model organisms and in humans and it was shown to increase the effectiveness of the 
influenza vaccine [25]. Additionally, metformin is known for lowering blood glucose levels, which 
are associated with COVID-19 severity, and there is new evidence mounting to suggest that 
metformin also has the potential to inhibit the pro-inflammatory phenotype of immune cells [26].  
Overall, our findings further substantiate the call for trials on longevity drugs to treat and/or prevent 
COVID-19 severity and lethality.  
 
There are limitations to this study, which warrant acknowledgement. First, the disease status was 
determined based on self-reported doctor diagnoses at baseline and hospital admission records to 
2017 (3 years before the pandemic), without use of the primary care data (to 2017, for nearly half 
of the UKB participants). Second, we did not include cancers in the analysis as the status of cancer 
(e.g., progressing vs. remission) is not available, which is strongly associated with mortality related 
to COVID-19 [27]. Additionally, some participants are not old enough to develop late-onset 
diseases. As disease cases may be misclassified as non-disease cases, the disease odds ratio 
estimates were likely to be biased towards the null [28]. Also, clinical severity data is not available, 
but we used the mortality data to derive the severity outcome, all-cause mortality with test-
confirmed COVID-19. While the mortality data is incomplete (censored at March 31, 2020, with 
additional mortality data from April, 2020), we excluded those who were tested positive and 
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survived so the impact on the results of all-cause mortality should be minimal. Lastly, the UKB 
sample is known to be healthier than the general population [29]; however, risk factor associations 
are usually generalizable [30]. 
 
In conclusion, accelerated aging measured by PhenoAge was associated with both COVID-19 
severity outcomes, with adjustment for demographics including current chronological age, and 
disease comorbidities. Accelerated PhenoAge in combination with demographics and disease 
comorbidities produced positive predicted values greater than the sample test positivity rate and 
all-cause mortality rate after COVID-19 infection. Accelerated aging by PhenoAge is largely 
characterized by inflammaging, suggested by the composition of biomarkers, the shared 
association with COVID-19 severity between PhenoAge and multiple diseases, and our prior gene 
enrichment analysis results of accelerated PhenoAge. Targeting the potential mechanisms 
underlying inflammaging may reduce COVID-19 severity. 
 
 
Materials and Methods 
 
UK Biobank data 
 
United Kingdom Biobank (UKB) [15,16] recruited over 500,000 subjects between the ages of 40 
and 70 during 2006 to 2010. We restricted analyses to participants attending baseline assessment 
centers in England, excluding those who died before February, 2020. At recruitment (baseline), 
biological samples of participants were collected for biomarker assays. The disease status was 
confirmed based on self-reported doctor diagnoses at baseline or hospital admission records 
updated to March, 2017. Also, the mortality data was used based on death certificates, censored 
at March 31, 2020, plus incomplete mortality data from April, 2020. These phenotypic data are 
linked to the UK national COVID-19 test results, currently from March 16 to May 31, covering the 
peak of COVID-19 incidence.  
 
Two COVID-19 severity outcomes were created: test positivity (versus the rest including untested 
samples and tested negative) and all-cause mortality with test-confirmed COVID-19 (versus the 
rest excluding those who were tested positive and survived). Test positivity is a proxy for COVID-
19 severity as testing during the above period was largely restricted to hospital in-patients with 
clinical signs of infection [3].  
 
PhenoAge 
 
PhenoAge [2] is a biological age measure in the same scale as that of chronological age. 
An excessive PhenoAge compared to the chronological age suggests accelerated aging. 
PhenoAge was developed based on mortality scores from the Gompertz proportional hazard model 
on chronological age and nine biomarkers (Table 1), which were selected from 42 biomarkers by 
Cox penalized regression model for best predicting mortality in the National Health and Nutrition 
Examination Survey (NHANES) III [2].  
 
Biomarkers in UKB were measured at baseline for all participants (measurement details in the UK 
Biobank Biomarker Panel [31] and UK Biobank Haematology Data Companion Document [32]). To 
correct distribution skewness, we set the top and bottom 1% of values to the 99th and 1st percentiles. 
The formula of PhenoAge is given by 
 

PhenoAge = 	141.50 +
ln 1(−0.00553) × (−1.51714) × exp	(𝑥𝑏)0.0076927 ?

0.09165  
 
where  
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𝑥𝑏 = −19.907 − 0.0336 × albumin+ 0.0095 × creatinine+ 0.1953 × glucose + 0.0954 × ln(CRP)
− 0.0120 × lymphocyte	percentage + 0.0268 ×mean	corpuscular	volume
+ 0.3306 × RDW+ 0.00188 × alkaline	phosphatase
+ 0.0554 × white	blood	cell	count + 0.0804 × age 

 
and  denotes the chronological age. 
 
Statistical Methods 
 
We linked the two COVID-19 severity outcomes to PhenoAge acceleration (PhenoAgeAccel), 
demographics including current chronological age (set at April 26, 2020, when the last death 
occurred in the data), and disease comorbidities by four logistic models: 
 
   M1: current chronological age 
   M2: current chronological age + PhenoAgeAccel at baseline 
   M3: current chronological age + pre-existing diseases or conditions 
   M4: current chronological age + pre-existing diseases or conditions + PhenoAgeAccel at  
   baseline 
 
where PhenoAgeAccel was estimated by the residual from the linear regression model of 
PhenoAge on chronological age at baseline. The above models were adjusted for sex, ethnicity, 
and baseline UKB assessment center in England to account for geographic differences in the 
prevalence of COVID-19. The pre-existing diseases or conditions were selected as those included 
in Atkins et al. [1] and liver disease (ICD-10 codes in Supplementary Table 4): dementia, type II 
diabetes, history of pneumonia, depression, atrial fibrillation, hypertension, COPD, chronic kidney 
disease, rheumatoid arthritis, coronary artery disease, history of delirium, stroke, asthma 
previous falls/fragile fractures, and osteoarthritis. 
 
We also evaluated M1-M4 for discriminative power using 10-fold cross validation by the area under 
the ROC curve (AUC). Specificity, positive and negative predictive values were reported when the 
sensitivity was controlled at 0.6 or 0.8 by manipulating the predicted probability threshold to predict 
who will be severely infected. 
 
For sensitivity analysis, we restricted test positivity to inpatient test positivity by origins when the 
sample was taken and excluded non-inpatient positives. We also replaced PhenoAgeAccel in M2 
by the nine individual PhenoAge biomarkers at baseline (M2Biomarkers),  
 
   M2Biomarkers: current chronological age + glucose + ln(CRP) + lymphocyte percentage +  
   mean corpuscular volume + RDW + alkaline phosphatase + white blood cell count 
 
where each biomarker was z-transformed to be in the same scale for the effect comparison with 
other biomarkers, within and between models. Additionally, sex, self-reported ethnicity, and 
assessment center at baseline were adjusted. All the statistical analyses were performed in R 
version 3.4.1. 
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the application 14631. The views expressed in this publication are those of the author(s) and not 
necessarily those of the NHS, the National Institute for Health Research or the Department of 
Health and social care. 
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Figures and Tables 
 
 
 
 
 
Figure 1. Receiver operating characteristic curves (ROCs) and areas under the ROC curves 
(AUCs) for test positivity and all-cause mortality with test-confirmed COVID-19 
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Figure 2. Associations between the nine PhenoAge biomarkers and test positivity or all-cause 
mortality with test-confirmed COVID-19, with adjustment for age at baseline, sex, ethnicity, and 
baseline assessment center in England 
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Table 1. Characteristics of the included samples: participants attending baseline assessment 
centers in England and alive before the pandemic (set at February 1, 2020) 
 

Included samples n=421,070 
Sex (=female) 232,184 (55%) 
Ethnicity  
   White 393,738 (94%) 
   Black 7,636 (1.82%) 
   Others (incl. Asian, Chinese, and Mixed) 17,307 (4.13%) 
Age at baseline (years) 56.3 ± 8.1 
Attained age (to April 26, 2020) (years) 67.9 ± 8.1 
COVID-19 severity groups  
   Positive and dead 197 (0.05%) 
   Positive and alive 
  

1,273 (0.30%) 
   Negative  4,630 (1.10%) 
   Untested 414,970 (98.55%) 
PhenoAge biomarkers n=347,751 
   Albumin (g/L) 45.28 ± 2.54 
   Alkaline phosphatase (U/L) 82.73 ± 22.38 
   Creatinine (umol/L) 71.97 ± 14.15 
   log C-reactive protein (CRP) mg/L 0.31 ± 1.04 
   Glucose (mmol/L) 5.09 ± 0.93 
   Lymphocyte percentage (%) 29.03 ± 7.14 
   Mean corpuscular volume (fL) 91.03 ± 4.23 
   Red blood cell distribution width (RDW)(%)  13.46 ± 0.85 
   White blood cell count (1000 cells/uL) 6.83 ± 1.69 
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Table 2. Models for COVID-19 test positivity and all-cause mortality with test-confirmed COVID-
19: M1 and M2  

 M1: current chronological age 

 
M2: current chronological age + PhenoAgeAccel 
 

 Positive vs. untested 
or negative 
(n=418,681) 

Positive dead vs. 
untested or negative 
(n=417,418) 

Positive vs. untested 
or negative 
(n=346,074) 

Positive dead vs. 
untested or negative 
(n=345,082) 

Sex1 (=Male) 
 

1.33 (1.20, 1.48) 
    p=5.32e-8 

2.63 (1.95, 3.57) 
    p=3.80e-10 

1.27 (1.13, 1.43) 
    p=6.63e-5 

2.18 (1.56, 3.05) 
    p=5.21e-6 

Ethnicity2 
    Black 
     
    Other (incl. Asian,  
    Chinese, and  
    Mixed) 
 

 
3.47 (2.73, 4.42) 
    p=4.76e-24 
2.09 (1.71, 2.57) 
    p=1.09e-12 
 

 
5.67 (3.18, 10.10) 
    p=3.83e-9 
1.11 (0.51, 2.39)  
    p=0.799 
 

 
3.27 (2.48, 4.31) 
  p=4.80e-17 
2.03 (1.61, 2.56)     
  p=2.33e-9  
 

 
4.92 (2.56, 9.44) 
    p=1.65e-6 
1.13 (0.49, 2.60)  
    p=0.777 
 

Current Age (per 5 
years) 
 

1.03 (1.00, 1.06)    
    p=0.075 

1.86 (1.65, 2.09) 
    p=3.06e-24 

1.04 (1.01, 1.08) 
    p=0.020 

1.82 (1.60, 2.08) 
    p=1.19e-19 
 

PhenoAgeAccel (per 
5 years) 

  1.30 (1.24, 1.38) 
   p=1.78e-22 

1.55 (1.36, 1.76) 
    p=3.04e-11     

1reference: female; 2reference: White; in bold if p<0.05; assessment center results skipped 
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Table 3. Models for COVID-19 test positivity and all-cause mortality with test-confirmed COVID-
19: M3 and M4 

 M3: current chronological age + 
diseases 

M4: current chronological age + 
PhenoAgeAccel + diseases 

 Positive alive vs. 
untested or 
negative 
(n=418,644) 

Positive dead vs. 
untested or 
negative 
(n=417,381) 

Positive alive vs. 
untested or 
negative 
(n=346,055) 

Positive dead vs. 
untested or 
negative 
(n=345,063) 

Sex1 (=Male) 
 

1.24 (1.12, 1.38) 
    p=6.91e-5 

2.52 (1.84, 3.45) 
    p=9.95e-9 

1.23 (1.09, 1.39) 
    p=6.54e-4 

2.28 (1.61, 3.22) 
    p=3.42e-6 

Ethnicity2 

    Black 
 
    Other (incl. Asian,  
    Chinese, and Mixed) 

 
3.05 (2.39, 3.89) 
    p=3.62e-19 
1.90 (1.54, 2.33)     
    p=1.09e-9 
 

 
4.37 (2.42, 7.90) 
    p=1.06e-6 
0.88 (0.40, 1.92) 
    p=0.747 

 
3.02 (2.28,4.00) 
    p=9.38e-15 
1.89 (1.49, 2.39)      
    p=1.07e-7 

 
4.16 (2.13, 8.12) 
    p=2.87e-5 
0.98 (0.42, 2.29) 
    p=0.970 

Current Age (per 5 
years) 
 

0.94 (0.91, 0.98) 
    p=0.001 

1.60 (1.41, 1.81) 
    p=1.25e-13 

0.97 (0.93, 1.01) 
    p=0.093 

1.61 (1.40, 1.84) 
    p=6.31e-12 

PhenoAgeAccel (per 5 
years) 

  1.15 (1.08, 1.21) 
    p=3.20e-6 

1.25 (1.09, 1.44) 
    p=0.002 

Dementia 
(46 pos., 13 pos. dead) 

8.56 (6.15, 11.91) 
    p=3.89e-37 

8.28 (4.33, 15.83) 
   p=1.68e-10 

8.83 (6.14, 12.69) 
    p=6.59e-32 

9.14 (4.58, 18.24) 
    p=3.55e-10 

Type II diabetes 
(201 pos., 51 pos. dead) 

1.61 (1.36, 1.90) 
    p=2.94e-8 

2.31 (1.62, 3.30) 
   p=4.32e-6 

1.50 (1.24, 1.82) 
    p=3.51e-5 

1.94 (1.29, 2.93) 
    p=0.001 

History of pneumonia 
(124 pos., 23 pos. dead) 

1.95 (1.60, 2.38) 
    p=3.66e-11 

1.72 (1.06, 2.78) 
   p=0.028 

1.82 (1.45, 2.28) 
    p=1.73e-7 

1.44 (0.83, 2.50) 
    p=0.192 

Depression 
(174 pos., 30 pos. dead) 

1.28 (1.09, 1.52) 
   p=0.003 

1.90 (1.26, 2.87) 
   p=0.002 

1.40 (1.16, 1.67) 
    p=3.36e-4 

2.00 (1.28, 3.12) 
    p=0.002 

Atrial fibrillation 
(126 pos., 28 pos. dead) 

1.61 (1.32, 1.97) 
    p=2.95e-6 

1.49 (0.96, 2.29) 
   p=0.073 

1.56 (1.25, 1.95) 
    p=8.63e-5 

1.41 (0.88, 2.28) 
    p=0.153 

Hypertension 
(670 pos., 131 pos. dead) 

1.30 (1.16, 1.46) 
    p=1.17e-5 

1.79 (1.29, 2.48) 
   p=5.09e-4 

1.25 (1.00, 1.43) 
    p=9.07e-4 

1.84 (1.29, 2.63) 
    p=8.64e-4 

COPD 
(110 pos., 26 pos. dead) 

1.55 (1.25, 1.93) 
    p=5.54e-5 

2.04 (1.29, 3.24) 
   p=0.002 

1.45 (1.14, 1.85) 
    p=0.003 

1.90 (1.14, 3.17) 
    p=0.013 

Chronic kidney disease 
(55 pos., 9 pos. dead) 

1.93 (1.45, 2.58) 
    p=7.06e-6 

1.11 (0.55, 2.27) 
    p=0.769 

1.77 (1.28, 2.44) 
    p=5.64e-4 

0.83 (0.36, 1.89) 
    p=0.657 

Liver disease 
(42 pos., 6 pos. dead) 

1.32 (0.96, 1.82) 
    p=0.083 

0.96 (0.41, 2.25) 
    p=0.931 

1.40 (0.99, 1.98) 
    p=0.054 

0.93 (0.36, 2.39) 
    p=0.878 

Rheumatoid Arthritis 
(38 pos., 12 pos. dead) 

1.11 (0.80, 1.55) 
    p=0.527 

2.26 (1.23, 4.14) 
    p=0.008 

0.99 (0.68, 1.45) 
    p=0.956 

1.55 (0.74, 3.28) 
    p=0.246 

Coronary artery disease 
(220 pos., 44 pos. dead) 

1.08 (0.92, 1.27) 
    p=0.349 

0.89 (0.61, 1.29) 
    p=0.539 

1.09 (0.91, 1.30) 
    p=0.374 

0.84 (0.56, 1.28) 
    p=0.421 

History of delirium 
(13 pos., 5 pos. dead) 

1.34 (0.73, 2.44) 
    p=0.341 

1.88 (0.69, 5.14) 
    p=0.216 

1.30 (0.67, 2.52) 
    p=0.443 

2.12 (0.75, 6.02) 
    p=0.158 

Stroke 
(46 pos., 10 pos. dead) 

1.19 (0.88, 1.62) 
    p=0.266 

1.09 (0.56, 2.12) 
    p=0.790 

1.34 (0.97, 1.85) 
    p=0.077 

1.29 (0.66, 2.53) 
    p=0.454 

Asthma 
(226 pos., 26 pos. dead) 

0.96 (0.83, 1.12) 
    p=0.607 

0.71 (0.46, 1.11) 
    p=0.131 

0.96 (0.81, 1.13) 
    p=0.611 

0.72 (0.45, 1.16) 
    p=0.175 

Previous falls/fragile 
fractures 
(387 pos., 65 pos. dead) 

1.08 (0.96, 1.22) 
    p=0.194 

1.35 (0.99, 1.84) 
    p=0.061 

1.04 (0.90, 1.19) 
    p=0.613 

1.20 (0.85, 1.69) 
    p=0.311 

Osteoarthritis 
(175 pos., 35 pos. dead) 

1.02 (0.86, 1.20) 
    p=0.859 

1.17 (0.80, 1.71) 
    p=0.416 

0.97 (0.81, 1.17) 
    p=0.759 

1.16 (0.76, 1.76) 
    p=0.487 

1reference: female; 2reference: White; in bold if p<0.05; assessment center results skipped 
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Table 4. Diagnostic values when the sensitivity is controlled at 0.6, or 0.8 for test positivity or all-
cause mortality with test-confirmed COVID-19 

Model AUC Threshold SEN SPEC PPV NPV 
Test positivity 

M1 0.601 0.00247 0.804 0.292 0.00379 0.99775 
M1 0.601 0.00320 0.602 0.550 0.00447 0.99758 
M2 0.626 0.00242 0.805 0.339 0.00407 0.99808 
M2 0.626 0.00321 0.603 0.581 0.00480 0.99772 
M3 0.663 0.00228 0.806 0.360 0.00420 0.99820 
M3 0.663 0.00308 0.606 0.641 0.00562 0.99794 
M4 0.669 0.00227 0.805 0.369 0.00426 0.99824 
M4 0.669 0.00314 0.603 0.652 0.00578 0.99796 

All-cause mortality with test-confirmed COVID-19 
M1 0.755 0.00029 0.805 0.525 0.00081 0.99982 
M1 0.755 0.00065 0.610 0.772 0.00127 0.99976 
M2 0.781 0.00035 0.805 0.622 0.00101 0.99985 
M2 0.781 0.00072 0.604 0.813 0.00154 0.99977 
M3 0.796 0.00029 0.817 0.609 0.00099 0.99986 
M3 0.796 0.00062 0.616 0.811 0.00155 0.99977 
M4 0.803 0.00029 0.805 0.621 0.00101 0.99985 
M4 0.803 0.00059 0.610 0.803 0.00147 0.99977 

M1: current chronological age; M2: current chronological age + PhenoAgeAccel at baseline; M3: current 
chronological age + pre-existing diseases or conditions; M4: current chronological age + pre-existing 
diseases or conditions + PhenoAgeAccel at baseline; Threshold: predicted probability threshold; SEN: 
sensitivity; SPEC: specificity; PPV: Positive Predictive Value; NPV: Negative Predictive Value 
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